Products chart for screw type

Products chart for snap-in type

Miniaturization

Capacity of Inverter (KVA)

PS2, US2 New Structure of cathode foil

• Improvement of heat radiation by making the cathode foil attached to the aluminum case inside.

• Maintain the heat radiation level by preventing the case deformity when

the inner pressure rises.

PS2, US2 Comparison of temperature rise

PS2,US2 Comparison of temperature rise

Wind speed Correction factor

Features(1)

Insulated inner side of the cap of the cap contributes to simplifying pattern design.

Conventional rubber multiplayer cap

New cap design

Features(2)

Insulated by making more space between capacitors in the P.C. Board.

Features(3)

• Prevention of throw-hole phenomenon.

Features(4)

• The decrease of the vent opening specified value from more than 5mm to more than 1mm.

Replacement

(Example)

(at40 /120Hz)

Current(Screw type)		New Series			
HCGI	F6 400V(85	/2kh)	PS2	400V(85	/2kh)
Size	Cap(μF)	Ir(A)	Size	Cap(μF)	Ir(A)
51×115	2200	16.5	51×51	1000	11.11
64×96	3300	20.7	51×61	1200	12.30
64×130	4700	27.8	51×71	1500	13.70

Current(screw type)		
Rated	400 V -3300μF	
Size $(D \times L)$	64×96 L	
Capacitors array	2 S ×1 P	
Pieces	2	
T.Cap(µF)	1650	
T.Ir(A)	20.70	
T.Volume(cm ³)	618	

New	Volume	Cost
400 V -1000μF		
51×51 L		
2 S ×2 P		
4	0.67	0.80
1000		
22.22		
417		

Capacitor for Multipurpose Inverter Miniaturization

Miniturization for our capacitor

Miniaturization

Method of miniaturization

Miniaturization

Inner space

Relative permittivity

of the dielectric

Spread of the plate (Improvement for Etching) Thickness of paper

Margin of paper

Improvement for forming

× Area of the plate Cap =Distance between the plate (=Dielectric)

Diele ctric(Al2O3) 14 /V $0.7 \mu m(400W.V.)$

Paper $50 \sim 200 \, \mu \, m$ Anode($100 \mu m$)

Cathode (20 μ m)

Miniaturization

Improvement of Etching

Spread of the plate (Improvement for Etching)

Raw Aluminum foil

The class of purity

Suitable direction of the crystallization

Pre-treatment(Clear of Al2O3)

Density of Etching pit

Shape of the Etching pit

Up to now

これまでの技術動向 許容リプルと体積の推移

R. of Oxidize Al.(Al₂O₃)

New construction for radiation Anode foil **New construction** Up to now **Paper** Cathode foil Al Cas

Get rid of filling material for fixing

Adoption of thick cathode foil

Dispersion of intense heat part

New construction for radiation

- 1 Terminal Cope with High Ripple current(100A) (10 16)
- 2 Rubber for fixing element fix by elastic
- 3 Stud guard against rotation of the element

New construction for radiation

Proposal of Change(FXA FXR)

Cap	FXA		FXR	
(µF)	Ir	Height	Ir	Height
5600	17.1	115	23.4	122
6800	19.6	130	26.9	137
8200	23.5	157	32.2	161

85 5000hr 400W.V.(90)

Ripple	Size	Cost
FXR/FXA	FXR/FXA	FXR/FXA
1.00	0.78	0.84

Long life (Operating condition)

$$L = L_0 * 2^{(T_0 - T/10)} * (W.V./V)^{2.5}$$

- Lo is life(standard life) when working voltage is applied and permissible ripple current load(center temperature To)
- To is at maximum operating temperature.
- L is estimated life when the voltage V is applied at the center temperature T. (when W.V. V 0.6 * W.V.)

Long life with operating condition

Reduction of Ambient temperature

Reduction of load ripple current

Reduction of load Voltage

```
Longer life time
(Higher reliability)
```

Longer life time (Higher reliability)

Oxidize Al. (Al2O3)
(Improvement for Forming)

Suitable Depolarization

Electrolyte

Non-organic-acid (Boric-acid)

Organic-acid (Low-R. and long life)

Longer life time (Higher reliability)

Oxidize Al. (Al2O3)
(Improvement for Forming)

Suitable Depolarization

Technical Trend

in Electric Automobile Industry

Important points in development

- (1) High ripple current capacitors
- (2) High vibration endurance capacitors
- (3) Low inductance capacitors
- (4) High temperature endurance capacitors
- (5) High voltage endurance capacitors

Development of High Vibration Endurance Capacitors

Fixing capacitor elements with resin cap(), the stud of case().

The condition about vibration.

ltem	Direction
Direction of vibration	X,Y,Z
Testing time	X、Y:2h、Z:4h
Frequency	10 ~ 200Hz
Sweeping time	20min
Gravitational acceleration	4 G

Development of low Inductance Capacitor

Inductance is concentrated to terminal area.

